733 research outputs found

    Seiberg-Witten prepotential for E-string theory and random partitions

    Get PDF
    We find a Nekrasov-type expression for the Seiberg-Witten prepotential for the six-dimensional non-critical E_8 string theory toroidally compactified down to four dimensions. The prepotential represents the BPS partition function of the E_8 strings wound around one of the circles of the toroidal compactification with general winding numbers and momenta. We show that our expression exhibits expected modular properties. In particular, we prove that it obeys the modular anomaly equation known to be satisfied by the prepotential.Comment: 14 page

    Seiberg-Witten prepotential for E-string theory and global symmetries

    Get PDF
    We obtain Nekrasov-type expressions for the Seiberg-Witten prepotential for the six-dimensional (1,0) supersymmetric E-string theory compactified on T^2 with nontrivial Wilson lines. We consider compactification with four general Wilson line parameters, which partially break the E_8 global symmetry. In particular, we investigate in detail the cases where the Lie algebra of the unbroken global symmetry is E_n + A_{8-n} with n=8,7,6,5 or D_8. All our Nekrasov-type expressions can be viewed as special cases of the elliptic analogue of the Nekrasov partition function for the SU(N) gauge theory with N_f=2N flavors. We also present a new expression for the Seiberg-Witten curve for the E-string theory with four Wilson line parameters, clarifying the connection between the E-string theory and the SU(2) Seiberg-Witten theory with N_f=4 flavors.Comment: 22 pages. v2: comments and a reference added, version to appear in JHE

    The Heavy Quark Potential in Two-Dimentional QCD with Adjoint Matter

    Full text link
    Using a loop formulation approach of QCD2_2, we study the potential between two heavy quarks in the presence of adjoint scalar fields, and demonstrate how 't Hooft's planar rule is manifested in this formulation. Based on some physical assumptions, we argue that large adjoint loops ``confined'' inside an external fundamental one give a Casimir type contribution to the potential energy, while the small loops only renormalize the string tension. We also extend the results to the case of massive adjoint fields.Comment: 24 pages phyzzx (6 figures available upon request), USITP-94-1

    From polymers to quantum gravity: triple-scaling in rectangular matrix models

    Full text link
    Rectangular N×MN\times M matrix models can be solved in several qualitatively distinct large NN limits, since two independent parameters govern the size of the matrix. Regarded as models of random surfaces, these matrix models interpolate between branched polymer behaviour and two-dimensional quantum gravity. We solve such models in a `triple-scaling' regime in this paper, with NN and MM becoming large independently. A correspondence between phase transitions and singularities of mappings from R2{\bf R}^2 to R2{\bf R}^2 is indicated. At different critical points, the scaling behavior is determined by: i) two decoupled ordinary differential equations; ii) an ordinary differential equation and a finite difference equation; or iii) two coupled partial differential equations. The Painlev\'e II equation arises (in conjunction with a difference equation) at a point associated with branched polymers. For critical points described by partial differential equations, there are dual weak-coupling/strong-coupling expansions. It is conjectured that the new physics is related to microscopic topology fluctuations.Comment: 29 page

    Equivalence of Two Dimensional QCD and the c=1c=1 Matrix Model

    Full text link
    We consider two dimensional QCD with the spatial dimension compactified to a circle. We show that the states in the theory consist of interacting strings that wind around the circle and derive the Hamiltonian for this theory in the large NN limit, complete with interactions. Mapping the winding states into momentum states, we express this Hamiltonian in terms of a continuous field. For a U(N)U(N) gauge group with a background source of Wilson loops, we recover the collective field Hamiltonian found by Das and Jevicki for the c=1c=1 matrix model, except the spatial coordinate is on a circle. We then proceed to show that two dimensional QCD with a U(N)U(N) gauge group can be reduced to a one- dimensional unitary matrix model and is hence equivalent to a theory of NN free nonrelativistic fermions on a circle. A similar result is true for the group SU(N)SU(N), but the fermions must be modded out by the center of mass coordinate.Comment: 15 pages, CERN-TH 6843/93, UVA-HET-93-0

    Symmetry Breaking Phase Transitions in ABJM Theory with a Finite U(1) Chemical Potential

    Full text link
    We consider the U(1) charged sector of ABJM theory at finite temperature, which corresponds to the Reissner-Nordstrom AdS black hole in the dual type IIA supergravity description. Including back-reaction to the bulk geometry, we show that phase transitions occur to a broken phase where SU(4) R-symmetry of the field theory is broken spontaneously by the condensation of dimension one or two operators. We show both numerically and analytically that the relevant critical exponents for the dimension one operator agree precisely with those of mean field theory in the strongly coupled regime of the large N planar limit.Comment: 22 pages, 6 figures, typos corrected, references added, improved figures, minor changes, accepted for publication in Phys. Rev.

    Leading Large N Modification of QCD_2 on a Cylinder by Dynamical Fermions

    Get PDF
    We consider 2-dimensional QCD on a cylinder, where space is a circle. We find the ground state of the system in case of massless quarks in a 1/N1/N expansion. We find that coupling to fermions nontrivially modifies the large NN saddle point of the gauge theory due to the phenomenon of `decompactification' of eigenvalues of the gauge field. We calculate the vacuum energy and the vacuum expectation value of the Wilson loop operator both of which show a nontrivial dependence on the number of quarks flavours at the leading order in 1/N1/N.Comment: 24 pages, TIFR-TH-94/3

    String Theoretical Interpretation for Finite N Yang-Mills Theory in Two-Dimensions

    Full text link
    We discuss the equivalence between a string theory and the two-dimensional Yang-Mills theory with SU(N) gauge group for finite N. We find a sector which can be interpreted as a sum of covering maps from closed string world-sheets to the target space, whose covering number is less than N. This gives an asymptotic expansion of 1/N whose large N limit becomes the chiral sector defined by D.Gross and W.Taylor. We also discuss that the residual part of the partition function provides the non-perturbative corrections to the perturbative expansion.Comment: 15 pages, no figures, LaTeX2e, typos corrected, final version to appear in Modern Physics Letters

    Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons

    Get PDF
    Both in string field theory and in p-adic string theory the equations of motion involve infinite number of time derivatives. We argue that the initial value problem is qualitatively different from that obtained in the limit of many time derivatives in that the space of initial conditions becomes strongly constrained. We calculate the energy-momentum tensor and study in detail time dependent solutions representing tachyons rolling on the p-adic string theory potentials. For even potentials we find surprising small oscillations at the tachyon vacuum. These are not conventional physical states but rather anharmonic oscillations with a nontrivial frequency--amplitude relation. When the potentials are not even, small oscillatory solutions around the bottom must grow in amplitude without a bound. Open string field theory resembles this latter case, the tachyon rolls to the bottom and ever growing oscillations ensue. We discuss the significance of these results for the issues of emerging closed strings and tachyon matter.Comment: 46 pages, 14 figures, LaTeX. Replaced version: Minor typos corrected, some figures edited for clarit

    The String Theory Approach to Generalized 2D Yang-Mills Theory

    Full text link
    We calculate the partition function of the SU(N)SU(N) ( and U(N)U(N)) generalized YM2YM_2 theory defined on an arbitrary Riemann surface. The result which is expressed as a sum over irreducible representations generalizes the Rusakov formula for ordinary YM_2 theory. A diagrammatic expansion of the formula enables us to derive a Gross-Taylor like stringy description of the model. A sum of 2D string maps is shown to reproduce the gauge theory results. Maps with branch points of degree higher than one, as well as ``microscopic surfaces'' play an important role in the sum. We discuss the underlying string theory.Comment: TAUP-2182-94, 53 pages of LaTeX and 5 uuencoded eps figure
    • 

    corecore